12.3 - 12.5 (dot product, cross product, lines and planes)

Problem 1. If $a = \langle 3, 0, -1 \rangle$, find a vector b such that the magnitude of the projection of b onto a is 2. Solution 1. We would like:

$$2 = \frac{b \cdot a}{\|a\|}$$

if b = (x, y, z) then we have:

$$\frac{3x-z}{\sqrt{10}} = 2$$

this has infinite solutions, if we want just one, we can set x = y = 0 and let $z = -2\sqrt{10}$

Problem 2. Compute $(i \times j) \times k$

Solution 2. $i \times j = k$ therefore $(i \times j) \times k = k \times k = 0$

Problem 3. If $a = \langle 2, -1, 3 \rangle$ and $b = \langle 4, 2, 1 \rangle$, compute $a \times b$ and $b \times a$

Solution 3. (-7, 10, 8)

Problem 4. Find the area of the parallelogram with vertices A(-3,0), B(-1,3), C(5,2), D(3,-1)

Solution 4. D is not necessary. We need two vectors found by going from A to B and A to C, this gives the vectors (-4, 3) and (8, 2). To find the area of the parallelogram, we need to have these be in 3 dimensions, so we just let z = 0 for both these and take the magnitude of the cross product;

$$|(-4,3,0) \times (8,2,0)| = 16$$

Problem 5. Is the line through (-4, -6, 1) and (-2, 0, -3) parallel to the line from (10, 18, 4) and (5, 3, 14)?

Solution 5. Take the difference to get the vectors (2, 6, -4) and (-5, -15, 10), then you can either see these are multiples of each other, or see that their cross product is the zero vector which says that they are parallel.

Problem 6. Find the equation of the plane through the origin and the points (3, -2, 1) and (1, 1, 1)

Solution 6. We have the origin is included in the plane, we just need the normal, which is found by dotting the two vectors:

 $(3, -2, 1) \times (1, 1, 1) = (-3, -2, 5)$

therefore the equation for the plane is -3x - 2y + 5z = 0

Problem 7. Find the distance between the given parallel planes:

$$2x - 3y + z = 4$$
$$4x - 6y + 2z = 3$$

Solution 7. There is a formula in the book that gives the distance between planes. My solution is to find the equation for a line normal to the planes that intersects the two planes, find the two intersection points and take the magnitude. The normal is (2, -3, 1) and the first plane contains the point (0, 0, 4). We therefore have the line r(t) = (2t, -3t, 4+t). We can find the intersection of the second plane by plugging in this set of points into the second equation:

$$4(2t) - 6(-3t) + 2(4+t) = 0$$

we solve for t which I got is 5/6 (could be wrong). We therefore have the point on the other plane as (5/3, -5/2, 4+5/6). Therefore the distance would be ||(5/3, -5/2, 5/6)||